Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors In vivo by ultrasound-guided injection or transcoronary delivery.
نویسندگان
چکیده
BACKGROUND Systemic levels of arginine vasopressin (AVP) are increased in congestive heart failure, resulting in vasoconstriction and reduced cardiac contractility via V(1) vasopressin receptors. V(2) vasopressin receptors (V2Rs), which promote activation of adenylyl cyclase, are physiologically expressed only in the kidney and are absent in the myocardium. Heterologous expression of V2Rs in the myocardium could result in a positive inotropic effect by using the endogenous high concentrations of AVP in heart failure. METHODS AND RESULTS We tested gene transfer with a recombinant adenovirus for the human V2R (Ad-V2R) to stimulate contractility of rat or rabbit myocardium in vivo. Ultrasound-guided direct injection or transcoronary delivery of adenovirus in vivo resulted in recombinant receptor expression in the myocardial target area, leading to a substantial increase in [(3)H]AVP binding. In 50% of the cardiomyocytes isolated from the directly injected area, single-cell shortening measurements detected a significant increase in contraction amplitude after exposure to AVP or the V2R-specific desmopressin (DDAVP). Echocardiography of the target myocardial area documented a marked increase in local fractional shortening after systemic administration of DDAVP in V2R-expressing animals but not in control virus-treated hearts. Simultaneous measurement of global contractility (dP/dt(max)) confirmed a positive inotropic effect of DDAVP on left ventricular function in the Ad-V2R-injected animals. CONCLUSIONS Adenoviral gene transfer of the V2R into the myocardium increases cardiac contractility in vivo. Heterologous expression of cAMP-forming receptors in the myocardium could lead to novel strategies in the therapy of congestive heart failure by bypassing the desensitized beta-adrenergic receptor-signaling cascade.
منابع مشابه
Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery.
Exogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testin...
متن کاملAdenoviral gene transfer of the human V2 vasopressin receptor improves contractile force of rat cardiomyocytes.
BACKGROUND In congestive heart failure, high systemic levels of the hormone arginine vasopressin (AVP) result in vasoconstriction and reduced cardiac contractility. These effects are mediated by the V1 vasopressin receptor (V1R) coupled to phospholipase C beta-isoforms. The V2 vasopressin receptor (V2R), which promotes activation of the Gs/adenylyl cyclase system, is physiologically expressed i...
متن کاملGene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.
In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling c...
متن کاملReconstitution of mutant V2 vasopressin receptors by adenovirus-mediated gene transfer. Molecular basis and clinical implication.
Recent studies with transfected COS-7 cells have shown that functionally inactive mutant V2 vasopressin receptors (occurring in patients with nephrogenic diabetes insipidus) can be functionally rescued by coexpression of a carboxy-terminal V2 receptor fragment (V2-tail) spanning the region where various mutations occur [Schöneberg, T., J. Yun, D. Wenkert, and J. Wess. 1996. EMBO (Eur. Mol. Biol...
متن کاملArrhythmia susceptibility in mice after therapy with beta-catenin-transduced hematopoietic progenitor cells after myocardial ischemia/reperfusion.
BACKGROUND Hematopoietic progenitor cells (HPCs) can improve cardiac function after myocardial infarction. However, occurrence of arrhythmias is a potential limitation of cell therapy. In this study, we investigated the cardiac electrophysiological properties of ex vivo expanded HPCs, generated by beta-catenin gene transfer, after transcoronary delivery in a murine model of ischemia/reperfusion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 101 13 شماره
صفحات -
تاریخ انتشار 2000